Contribution from the Department of Chemistry, University of Utah, Salt Lake City, Utah 841 12

Bis(trimethy1phosphine)-Diborane(4) as a Reagent for Borane Framework Expansion

Christopher P. Jock, Mitsuaki Kameda, and Goji Kodama*

Received July 11, 1989

There are few published methods available for systematic, stepwise expansions of lower borane compounds. Earlier, Shore and co-workers developed a method for expanding these types of compounds through insertion of a $BH₃$ group into borane anions.¹ Later, the same group developed another systematic approach for obtaining higher boranes from lower boron hydride anions.2 This approach is based on the abstraction of a hydride ion from an anionic boron hydride using boron trihalide. The resulting reactive, neutral borane species is thought to undergo further reaction to yield an expanded borane compound.

Bis(trimethylphosphine)-diborane(4), B_2H_4 -2P(CH₃)₃, is reactive toward electrophiles such as hydrogen chloride, boranes, and certain transition-metal compound^.^ Noted in several **papers** is the description that the diborane(4) adduct acts as a reagent for borane framework expansion. See *eq* 1-3. **In** these reactions,

$$
B_2H_6 + B_2H_4 \cdot 2P(CH_3)_3 \rightarrow B_3H_7 \cdot P(CH_3)_3 + BH_3 \cdot P(CH_3)_3
$$

$$
(1)^{36}
$$

 B_3H_7 ·THF + B_2H_4 ·2P(CH₃)₃ \rightarrow

$$
B_4H_8 \cdot P(CH_3)_3 + BH_3 \cdot P(CH_3)_3 + THF (2)^{3\epsilon}
$$

\n
$$
B_5H_{11} + B_2H_4 \cdot 2P(CH_3)_3 \rightarrow B_6H_{12} \cdot P(CH_3)_3 + BH_3 \cdot P(CH_3)_3
$$

\n(3)^{3c}

the diborane(4) adduct splits into $BH_3 \cdot P(CH_3)$ and "BH $\cdot P$ - $(CH₃)₃$ ", and the latter combines with the respective borane substrate. **On** the other hand, we observed that the triborane(7) adducts of trimethylamine and trimethylphosphine *would not* react with $B_2H_4.2P(CH_3)_3$ ⁴ Subsequently, we investigated the reactions of several other lower borane compounds with B_2H_4 . $2P(CH_3)$ to examine if the borane expansion is a general type of reaction. The results are reported in this paper.

Results

Reactions of Bis(trimethylphosphine)-Diborane(4). (a) With Tetraborane(8) Adducts. The diborane(4) adduct readily reacted with phosphine-tetraborane(8), $B_4H_8.PH_3$, at 0 °C in dichloromethane to give trimethylphosphine-pentaborane(9) $[B_5H_9 \cdot P(C H_3$)₃] and BH₃·P(CH₃)₃. Equation 4 is appropriate for this re- B_4H_8 ·PH₃ + B_2H_4 ·2P(CH₃)₃ \rightarrow

$$
\bar{B}_5H_9 \cdot P(CH_3) \bar{J}_3 + BH_3 \cdot P(CH_3) \bar{J}_3 + BH_3 \cdot PH_3
$$
 (4)

action. The yield of the pentaborane(9) adduct was 72% as determined by signal intensities of the ¹¹B NMR spectrum of the reaction solution. However, neither the trimethylamine or trimethylphosphine adduct of B_4H_8 reacted with B_2H_4 -2P(CH₃)₃ at room temperature.

(b) With Trimethylphosphine-Pentaborane(9). The diborane(4) adduct reacted slowly with $B_5H_9 \cdot P(CH_3)$ ₃ in dichloromethane at room temperature and yielded a mixture of several borane compounds. Trimethylphosphine-borane(3) and B_6H_{10} -2P(CH₃)₃ were the two major products as determined by the ¹¹B NMR spectrum. The principal reaction is summarized by eq *5.* The spectroscopic yield of B_6H_{10} . 2P(CH₃)₃ was 65%.

Kameda, **M.;** Kodama, G. *Inorg. Chem.* **1984, 23, 3710.**

$$
29, 570-571
$$

B₃H₉P(CH₃)₃ + B₂H₄·2P(CH₃)₃ →
B₆H₁₀·2P(CH₃)₃ + BH₃·P(CH₃)₃ (5)

Discussion

In contrast to the observed expansion of B_3H_7 THF and B_4 - H_8 -PH₃ by B₂H₄-2P(CH₃)₃ into B₄H₈-P(CH₃)₃ and B₅H₉-P(CH₃)₃ (eqs 2 and **4),** respectively, the trimethylamine and trimethylphosphine adducts of B_3H_7 and B_4H_8 do not undergo reaction under comparable conditions. Bonding of a strong base, like $N(CH_3)$ ₃ or P(CH₃)₃, to the B₃H₇ and B₄H₈ fragments renders these borane adducts less electrophilic, as compared with B_3 - H_7 .THF or B_4H_8 .PH₃, and therefore the reaction with B_2H_4 . $2P(CH_3)$ ₃ is thought to be prevented.

Borane acidity generally increases with size of the borane structure.⁵ Therefore, although bonded to $P(CH_1)_3$, the B₅H₉ moiety in $B_5H_9 \cdot P(CH_3)$ has sufficient borane acidity, or electrophilicity, to undergo a slow expansion reaction at room temperature (eq 5). **In** contrast, the reaction of penfaborane(l1) is rapid even at -80 °C (eq 3).^{3c} Here again, the difference in borane acidity is thought to be largely responsible for the reactivity difference between these two arachno-pentaborane compounds.

The borane framework expansion by B_2H_4 -2P(CH₃)₃ appears to be a general type of reaction provided that sufficient electrophilicity is maintained in the reacting borane compound. Trimethylphosphine adducts of larger borane fragments will undergo the aforementioned expansion reaction, because increased borane acidity of large borane fragments overcomes the effect of the strong bases bonded. The observed low yields of $B_5H_9 \cdot P(CH_3)$ and B_6H_{10} ²P(CH₃)₃ in the above reactions (eqs 4 and 5) are, therefore, in part attributed to the further reactions of the expanded products with B_2H_4 -2P(CH₃)₃ to yield higher borane compounds that have yet to be characterized.

Like B_2H_4 -2P(CH₃)₃, other B_2H_4 adducts are reactive toward electrophilic borane compounds. We have reported the reactions of B_2H_4 -2N(CH₃)₃ and B_2H_4 -N(CH₃)₃.P(CH₃)₃ with diborane(6) to form $B_3H_7 N(CH_3)_3$ and $B_3H_7 P(CH_3)_3$, respectively.⁶ The B2H4 adducts containing different Lewis bases should exhibit varied degrees of reactivity toward electrophiles depending **upon** the nature of the Lewis bases involved, and therefore by choosing appropriate Lewis bases in the B_2H_4 adducts, one should be able to control the framework expansion reactions. The study is in progress, and the results will be reported at a future date.

Experimental Section

Equipment and Chemicals. Conventional vacuum-line techniques were used throughout for the handling of volatile and air-sensitive compounds. Air-sensitive solids were handled in nitrogen-filled plastic bags. Our laboratory stock B_2H_4 -2P(CH₃)₃ was prepared from B_5H_9 by the published method^{3c} and stored at -50 °C. The other borane adducts used for the reaction studies were prepared by the methods that are described in the respective references. Reagent grade dichloromethane was refluxed and distilled over P_2O_5 , stored over molecular sieves in a container, and distilled directly into the vacuum line as needed. The ¹¹B NMR spectra were recorded on a Varian **XL-100-15** NMR spectrometer, operating in FT mode, equipped with a variable-temperature control unit and a spin-decoupling device. The 11 B chemical shift values for BH_3 ·P- $(\text{CH})_3$)₃,^{3c,14} and B₆H₁₀·2P(CH₃)₃¹⁵ are found in the respective references $(CH)_3$)₃,⁷ BH₃·PH₃,⁸ BH₃·N(CH₃)₃,⁸ B₂H₄·2P(CH₃)₃,^{3b,10} B₃H₇·P(C- H_3)₃,¹¹ B₄H₈·PH₃,¹² B₄H₈·P(CH₃)₃,^{3e} B₄H₈·N(CH₃)₃,¹³ B₅H₉·P-

-
- (5) Parry, R. W.; Edwards, L. J. J. Am. Chem. Soc. 1950, 81, 3554.
(6) DePoy, R. E.; Kodama, G. *Inorg. Chem.* 1985, 24, 2871. DePoy, R. E.; Kodama, G. *Ibid.* 1988, 27, 1116.
E.; Kodama, G. *Ibid.* 1988, 27, 1116.
(7) Ea
- **(8)** Rudolph, R. W.; Parry, R. W.; Farran, C. **F.** *Inorg. Chem.* **19665,723.**
- **(9)** Reference **5,** p **459.** (10) Hertz, R. K.; Denniston, **M.** L.; Shore, **S.** G. *Inorg. Chem.* **1978,** *17,*
- **2673.**
-
-
- (11) Bishop, V. L.; Kodama, G. *Inorg. Chem.* 1**981**, 20, 2724.
(12) Jock, C. P.; Kodama, G. *Inorg. Chem.* 1988, 27, 3431.
(13) Dodds, A. R.; Kodama, G. *Inorg. Chem.* 1979, 18, 1465.
(14) Long, J. R. Ph.D. Dissertation,
- **OH, 1973.**

Remmel, R. J.; Johnson, H. D., **11;** Jaworiwsky, **I. S.;** Shore, **S.** G. *J. Am. Chem. SOC.* **1975, 97, 5395.**

 (2) Toft, M. A.; Leach, J. B.; Himpsl, F. L.; Shore, S. G. Inorg. Chem. **1982, 21, 1952.**

⁽a) Kameda, **M.;** Kodama, G. *J. Am. Chem. Soc.* **1980,102,3647.** (b) Kameda, M.; Kodama, G. *Inorg. Chem.* 1980, 19, 2288. (c) Kameda, M.; Kodama, G. *Ibid.* 1982, 21, 1267. (d) Snow, S. A.; Shimoi, M.; Costle, C. D.; Thompson, B. (Stephen, C. D.; 1982, 21, 1267. C. D.; 1982, 21, 1267. 21, **3705.** (0 Snow, **S. A.;** Kodama, G. *Ibid.* **1985, 24, 795.**

cited, and these were used to identify the components in the reaction mixtures.

Reactions of B_2H_4 -2 $P(CH_3)_3$ with Borane Adducts. **(a)** With B_4H_8 -**PH**₃. A sample of $B_4H_8.$ PH₃¹² was prepared in a 10 mm o.d. Pyrex reaction tube that was equipped with a stopcock and a 10 mm o.d. side arm. A 0.54-mmol sample of B_5H_{11} and 1.41 mmol of PH₃ were used for this preparation. About 2 mL of dichloromethane was condensed into the tube to prepare a clear solution, and then the solution was frozen at -197 °C. Nitrogen gas was admitted into the tube and the side arm cut open to introduce a 0.52 -mmol sample of B_2H_4 -2P(CH₃)₃. During this procedure an outward flow of nitrogen gas was maintained through the side arm. The side arm was then resealed, and the tube was reevacuated. The contents of the tube were mixed throughly at -80 $^{\circ}$ C to give a clear solution. The tube was then placed in the chilled probe of the NMR spectrometer to monitor the reaction starting at -80 °C.

Up to -30 °C no sign of reaction could be detected; the spectrum consisted of the signals of B_4H_8 . PH₃ and B_2H_4 . 2P(CH₃)₃. At 0 °C, the signal of BH3.P(CH3), began to appear in the spectrum. **In** 1 h the signals of BH₃.P(CH₃)₃ and B₅H₉.P(CH₃)₃ were strong, and as the tube was allowed to warm to room temperature, the signals of B₂H₄.2P(CH₃)₃ and B₄H₈.PH₃ completely disappeared. Minor quantities of several other boron compounds were present in the final solution, identifiable components being BH₃·PH₃ and B₅H₉

(b) With B_4H_8 $P(CH_3)$, and B_4H_8 $N(CH_3)$,. A 0.45-mmol sample of $B_4H_8 \cdot P(CH_3)_3$ ^{3e} was prepared by the reaction of $B_3H_6 \cdot 2P(CH_3)_3 + B_3H_8$ with $N(CH_3)$, in a reaction tube and was treated with 0.56 mmol of B_2H_4 -2P(CH₃)₃ in a manner similar to that described for the B_4H_8 -PH₃ reaction in part a. The ¹¹B NMR spectrum of the reaction solution indicated there was **no** significant reaction after 12 h at room temperature; faint signals of $B_3H_7P(CH_3)$, and an unidentified borane compound (-18 ppm) were detected.

Similarly, a 0.54-mmol sample of $B_4H_8 N(CH_3)_3^{13}$ was treated with 0.55 mmol of B_2H_4 -2P(CH₃)₃. At 0 °C, a small amount of $BH_3N(CH_3)$, formed. However, **no** further change occurred while the tube was kept at room temperature for 5 h.

(c) With $B_5H_9 \cdot P(CH_3)$,. A sample of $B_5H_9 \cdot P(CH_3)$ ^{3c} was prepared by the reaction of B_5H_{11} (0.50 mmol) with B_2H_4 -2P(CH₃)₃ (0.4 mmol). The amount of $B_5H_9 \cdot P(CH_3)$, produced was estimated to be 0.3 mmol on the basis of the amount of B_2H_6 generated from the reaction. This sample was condensed into a reaction tube and treated with 0.4 mmol of B_2H_4 .2P(CH₃)₃ in a manner similar to that described above.

At 0 °C slow change began to occur; the signals of $B_6H_{10}^2$, $2P(CH_3)$, and BH_3 - $P(CH_3)$, were discernible. As the tube was allowed to warm to room temperature, the intensities of the B_6H_{10} . $2P(CH_3)$, and BH_3 . $P(CH₃)₃$ signals continued to increase slowly, and in 10 h the signals of $B_5H_9 \cdot P(CH_3)$, had diminished considerably. Weak signals of B_2H_4 . $2P(\hat{C}H_3)$, and other unidentified boron compounds were present, as determined from the final spectrum.

Acknowledgment. We gratefully acknowledge the support of this work by the U.S. Army Research Office through Grant DAAG 29-85-K-0034.

Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843

Secondary (Polyfluoroa1kyl)chloroamines: Precursors to Fluoroazaalkenes

Ghulam Sarwar, Robert L. Kirchmeier,* and Jean'ne M. Shreeve*

Received August 8, *1989*

There are a very large number of fluorinated azaalkenes, and there is an excellent review of synthetic methods for and reported chemistry of these compounds.' A facile, nearly quantitative route to azaalkenes provided by the photolysis of $R_fN(CF_2CFXC)Cl$

Results and Discussion

Chlorine fluoride can be reacted smoothly with $Cl_2C=NC$ - $Cl_2CCl_2N=CCl_2$ to saturate the carbon-nitrogen double bond and partially fluorinate the compound. Repeated photolysis and reaction with chlorine fluoride provide a high-yield route to $CF₃N=CF₂$

reaction with chlorine fluoride provide a high-yield route to
\nCF₃N=CF₂
\nCl₂C=NCCl₂CCl₂N=CCl₂ + CIF
$$
\rightarrow
$$

\nCF₂CIN(Cl)CFCICFCIN(Cl)CF₂Cl³
\n1 $\frac{h\nu}{-2Cl_2}$ CF₂CIN=CFCF=NCF₂Cl³
\n2 + 2CIF \rightarrow CF₂CIN(Cl)CF₂CF₂N(Cl)CF₂Cl
\n3 $\frac{h\nu}{-Cl_2}$ F₂C=NCF₂CF₂N=CF₂ + CF₂ClN=CF₂
\n4 + 2CIF \rightarrow CF₃N(Cl)CF₂CF₂N(Cl)CF₃
\n6 $\frac{h\nu}{-Cl_2}$ CF₃N=CF₂—CF₂—NCF₃ \rightarrow 2CF₃N=CF₂
\n7

Olefins, such as CF₂=CFCI, can be inserted into the N-Cl bond of $Cl_2NCF_2CF_2NCl_2^4$ to give a bis(secondary chloroamine)³ similar to **1**

$$
Cl2NCF2CF2NCl2 + CF2=CFX \rightarrow
$$

CFXClCF₂N(Cl)CF₂CF₂N(Cl)CF₂CFXCl
8 (X = C1)
9 (X = F)
X = Cl, F

which can be photolyzed to the azaalkenes **10** and **11**

$$
9 (X = F)
$$

\n
$$
X = CI, F
$$

\nphotolyzed to the azaalkenes 10 an
\n8 or $9 \xrightarrow{-\text{C1}_2} 2\text{CF}_2 = \text{NCF}_2 \text{CFXCI}^5$
\n
$$
10 (X = CI)
$$

\n
$$
11 (X = F)
$$

and in the presence of fluoride ion isomerization to **12** and **13** occurs:

$$
10 (X - CI)
$$

11 (X = F)
sence of fluoride ion isomerization
10 or 11 \xrightarrow{CsF} CF₃N=CFCFXCl
12 (X = Cl)
13 (X = F)

Dechlorofluorination of certain secondary chloroamines with triphenylphosphine also gives rise to azaalkenes:
 $CF_3N(Cl)CF_2CFXCI^2 + Ph_3P \rightarrow 12$ or 13

$$
CF3N(Cl)CF2CFXCI2 + Ph3P \rightarrow 12 \text{ or } 13
$$

$$
X = \text{Cl}, F
$$

Experimental Section

Materials. The reagents $CF_2CIN(Cl)CFCICFCIN(Cl)CF_2Cl$,³ CF_2 - $CIN=CFCF=NCF₂Cl₃$ and $Cl₂NCF₂CF₂NCI₂⁴$ were prepared according to the literature; $Cl_2C=NCCl_2\overline{C}Cl_2N=CCl_2$ was a gift of Dr. E. Klauke (Bayer AG, Laverkusen, FRG). Other chemicals were purchased and used as received: chlorine fluoride (Ozark-Mahoning); $CF_2=CF_2$ and $CF_2=CFCI$ (PCR); and CsF (American Potash).

General Procedures. Gases and volatile liquids were handled in a conventional Pyrex glass vacuum system fitted with a Heise Bourdon tube and Televac thermocouple gauges. Volatile starting materials and products were quantitated by using PVT techniques. Infrared spectra were recorded **on** a Perkin-Elmer 1710 Fourier transform infrared were recorded on a Perkin-Elmer 1710 Fourier transform infrared spectrometer with a 10-cm gas cell equipped with KBr windows. ¹⁹F

- (2) Sarwar, G.; Kirchrneier, R. L.; Shreeve, J. M. Inorg. *Chem.* **1989,28,** 3345.
- (3) Sarwar, G.; Kirchmeier, R. L.; Shreeve, J. M. *Heteroatom Chem.*, (4) submitted for publication.

De Marco, R. A.; Shreeve, J. M. J. *Fluorine Chem.* **1971/72**, *I*, 269.
-
- *(5)* Zheng, Y. Y.; DesMarteau, D. D. *J. Org. Chem.* **1983,** *48,* 4844.

⁽¹⁵⁾ Mangion, M.; Hertz, **R.** K.; Denniston, M. L.; Long, J. R.; Clayton, W. **R.;** Shore, **S.** G. J. *Am. Chem. Soc.* **1976,** *98,* 449.

⁽I) Haas, **A.** *Gmelin* Handbook *of Inorganic Chemistry,* 8th ed.; Koschei, D., **Ed.;** Springer-Verlag: New York, 1979; Part 9, Chapter 8.